Wednesday, August 15, 2012

A journey through our Solar system

Know our solar system

So friends many of you already know much about our Solar system, but for those who don't know much we will explain you.

The Solar System is located in the Milky Way galaxy, a barred spiral galaxy with a diameter of about 100,000 light-years containing about 200 billion stars. The Sun resides in one of the Milky Way's outer spiral arms, known as the Orion–Cygnus Arm or Local Spur. The Sun lies between 25,000 and 28,000 light years from the Galactic Center, and its speed within the galaxy is about 220 kilometres per second, so that it completes one revolution every 225–250 million years. This revolution is known as the Solar System's galactic year. 
The Solar System consists of the Sun and other astronomical objects gravitationally bound in orbit around it. The principle object in our solar system is the sun and countaining 99.89 % mass of the solar system.our sun is G2 main-sequence star{we will explain it later}. the 99% of the remaining masss is dominated by for lasgest planets als called gas giants. and leave rest of the mass for inner planets and other objects.
The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal then comes the outer planets, also called the gas giants, are substantially more massive than the terrestrials. Jupiter, Saturn, Uranus and Neptune, The Solar System is also home to a number of regions populated by smaller objects. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. Beyond Neptune's orbit lie the Kuiper belt and scattered disc.

 Birth of our Solar System

The nebular hypothesis is the most widely accepted model explaining the formation and evolution of the Solar System. According to this theory it all 4.568 billion years ago when an interstellar cloud of gas and dust, approximately 50,000 AU in diameter, began to collapse gravitationally. Its mass may have been a few thousand solar masses. The cloud fragmented and one area with at least 1.1 to 2.0 solar masses, continued to collapse. Several mechanisms could have initiated such an event.

A shock wave from a supernova may have triggered the formation of the Sun by creating regions of over-density within the cloud, causing these regions to collapse. Because only massive, short-lived stars produce supernovae, the Sun must have formed in a large star-forming region that produced massive stars.

The cloud formed a disk about 60 AU across and about one AU thick. Temperatures rose more rapidly near the center where the density and opacity were greatest. The center of the cloud may have been about 2000 K (3000 °F), while the edge remained cold at about 100 K (-300 °F). Dust vaporized near the center, and atoms became ionized creating a magnetic field which permeated the contracting mass.

Because of the conservation of angular momentum, the nebula spun faster as it collapsed. As the material within the nebula condensed, the atoms within it began to collide with increasing frequency, converting their kinetic energy into heat. The centre, where most of the mass collected, became increasingly hotter than the surrounding disc. Over about 100,000 years, the competing forces of gravity, gas pressure, magnetic fields, and rotation caused the contracting nebula to flatten into a spinning Protoplanetary disc with a diameter of ~200 AU and form a hot, dense protostar (a star in which hydrogen fusion has not yet begun) at the center.

The Evolution

At this point in its evolution, the Sun is thought to have been a T Tauri star. Studies of T Tauri stars show that they are often accompanied by discs of pre-planetary matter with masses of 0.001–0.1 solar masses. These discs extend to several hundred AU. The Hubble Space Telescope has observed protoplanetary discs of up to 1000 AU in diameter in star-forming regions such as the Orion Nebula and are rather cool, reaching only one thousand Kelvin at their hottest. Within 50 million years, the temperature and pressure at the core of the Sun became so great that its hydrogen began to fuse, creating an internal source of energy that countered gravitational contraction until hydro static equilibrium was achieved. This marked the Sun's entry into the prime phase of its life, known as the main sequence. Main sequence stars derive energy from the fusion of hydrogen into helium in their cores. The Sun remains a main sequence star today.

The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun's formation. The currently accepted method by which the planets formed is known as accretion, in which the planets began as dust grains in orbit around the central protostar. Through direct contact, these grains formed into clumps up to 200 meters in diameter, which in turn collided to form larger bodies, At the end of the planetary formation epoch the inner Solar System was populated by 50–100 Moon- to Mars-sized planetary embryos. Further growth was possible only because these bodies collided and merged, which took less than 100 million years. These objects would have gravitationally interacted with one another, tugging at each other's orbits until they collided, growing larger until the four terrestrial planets we know today (Mercury, Venus, Earth, and Mars) took shape.

When the terrestrial planets were forming, they remained immersed in a disk of gas and dust. The gas was partially supported by pressure and so did not orbit the Sun as rapidly as the planets. The resulting drag caused a transfer of angular momentum, and as a result the planets gradually migrated to new orbits. Models show that temperature variations in the disk governed this rate of migration, but the net trend was for the inner planets to migrate inward as the disk dissipated, leaving the planets in their current orbits.

After the formation of the Solar System, the orbits of all the giant planets continued to change slowly, influenced by their interaction with the large number of remaining planetesimals. After 500–600 million years (about 4 billion years ago) Jupiter and Saturn fell into a 2:1 resonance: Saturn orbited the Sun once for every two Jupiter orbits. This resonance created a gravitational push against the outer planets, causing Neptune to surge past Uranus and plough into the ancient Kuiper belt. The planets scattered the majority of the small icy bodies inwards, while themselves moving outwards. These planetesimals then scattered off the next planet they encountered in a similar manner, moving the planets' orbits outwards while they moved inwards. This process continued until the planetesimals interacted with Jupiter, whose immense gravity sent them into highly elliptical orbits or even ejected them outright from the Solar System. This caused Jupiter to move slightly inward. Those objects scattered by Jupiter into highly elliptical orbits formed the Oort cloud, those objects scattered to a lesser degree by the migrating Neptune formed the current Kuiper belt and scattered disc. This scenario explains the Kuiper belt's and scattered disc's present low mass. Some of the scattered objects, including Pluto, became gravitationally tied to Neptune's orbit, forcing them into mean-motion resonances. Eventually, friction within the planetesimal disc made the orbits of Uranus and Neptune circular again.

The evolution of the asteroid belt after Late Heavy Bombardment was mainly governed by collisions. Objects with large mass have enough gravity to retain any material ejected by a violent collision. In the asteroid belt this usually is not the case. As a result, many larger objects have been broken apart, and sometimes newer objects have been forged from the remnants in less violent collisions. Moons around some asteroids currently can only be explained as consolidations of material flung away from the parent object without enough energy to entirely escape its gravity.

 A Burning Fireball, "The Sun"

The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields. It has a diameter of about 1,392,684 km, about 109 times that of Earth, and its mass (about 2×1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System. Chemically, about three quarters of the Sun's mass consists of hydrogen, while the rest is mostly helium. The remainder (1.69%, which nonetheless equals 5,628 times the mass of Earth) consists of heavier elements, including oxygen, carbon, neon and iron, among others.

The Sun's stellar classification, based on spectral class, is G2V, and is informally designated as a yellow dwarf, because its visible radiation is most intense in the yellow-green portion of the spectrum and although its color is white, from the surface of the Earth it may appear yellow because of atmospheric scattering of blue light. In the spectral class label, G2 indicates its surface temperature of approximately 5778 K (5505 °C), and V indicates that the Sun, like most stars, is a main-sequence star, and thus generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen each second. Once regarded by astronomers as a small and relatively insignificant star, the Sun is now thought to be brighter than about 85% of the stars in the Milky Way galaxy, most of which are red dwarfs. The absolute magnitude of the Sun is +4.83; however, as the star closest to Earth, the Sun is the brightest object in the sky with an apparent magnitude of −26.74. The Sun's hot corona continuously expands in space creating the solar wind, a stream of charged particles that extends to the heliopause at roughly 100 astronomical units. The bubble in the interstellar medium formed by the solar wind, the heliosphere, is the largest continuous structure in the Solar System.

The Sun orbits the center of the Milky Way at a distance of approximately 24,000–26,000 light-years from the galactic center, completing one clockwise orbit, as viewed from the galactic north pole, in about 225–250 million years. Since our galaxy is moving with respect to the cosmic microwave background radiation (CMB) in the direction of the constellation Hydra with a speed of 550 km/s, the Sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo.

The mean distance of the Sun from the Earth is approximately 149.6 million kilometers (1 AU), though the distance varies as the Earth moves from perihelion in January to aphelion in July. At this average distance, light travels from the Sun to Earth in about 8 minutes and 19 seconds.

The Sun is a G-type main-sequence star comprising about 99.86% of the total mass of the Solar System. It is a near-perfect sphere, with an oblateness estimated at about 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 km. As the Sun consists of a plasma and is not solid, it rotates faster at its equator than at its poles. This behavior is known as differential rotation, and is caused by convection in the Sun and the movement of mass, due to steep temperature gradients from the core outwards. This mass carries a portion of the Sun’s counter-clockwise angular momentum, as viewed from the ecliptic north pole, thus redistributing the angular velocity. The period of this actual rotation is approximately 25.6 days at the equator and 33.5 days at the poles. However, due to our constantly changing vantage point from the Earth as it orbits the Sun, the apparent rotation of the star at its equator is about 28 days. The centrifugal effect of this slow rotation is 18 million times weaker than the surface gravity at the Sun's equator. The tidal effect of the planets is even weaker, and does not significantly affect the shape of the Sun.

The Sun is a Population I, or heavy element-rich, star. The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae. This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II (heavy element-poor) stars. These elements could most plausibly have been produced by endergonic nuclear reactions during a supernova, or by transmutation through neutron absorption inside a massive second-generation star.

Core - The core of the Sun is considered to extend from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm3 (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the rest of the radiative zone. Through most of the Sun's life, energy is produced by nuclear fusion through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium. The proton–proton chain occurs around 9.2×1037 times each second in the core of the Sun. Since this reaction uses four free protons (hydrogen nuclei), it converts about 3.7×1038 protons to alpha particles (helium nuclei) every second (out of a total of ~8.9×1056 free protons in the Sun), or about 6.2×1011 kg per second. Since fusing hydrogen into helium releases around 0.7% of the fused mass as energy, the Sun releases energy at the mass-energy conversion rate of 4.26 million metric tons per second, 384.6 yotta watts (3.846×1026 W),[1] or 9.192×1010 megatons of TNT per second. This mass is not destroyed to create the energy, rather, the mass is carried away in the radiated energy, as described by the concept of mass-energy equivalence.

Radiative zone - Below about 0.7 solar radii, solar material is hot and dense enough that thermal radiation is sufficient to transfer the intense heat of the core outward. This zone is free of thermal convection; while the material gets cooler from 7 to about 2 million kelvin with increasing altitude, this temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection. The density drops a hundredfold (from 20 g/cm3 to only 0.2 g/cm3) from 0.25 solar radii to the top of the radiative zone. The fluid motions found in the convection zone above, slowly disappear from the top of this layer to its bottom, matching the calm characteristics of the radiative zone on the bottom. Presently, it is hypothesized (see Solar dynamo), that a magnetic dynamo within this layer generates the Sun's magnetic field.

Convective zone - In the Sun's outer layer, from its surface down to approximately 200,000 km (or 70% of the solar radius), the solar plasma is not dense enough or hot enough to transfer the thermal energy of the interior outward through radiation; in other words it is opaque enough. As a result, thermal convection occurs as thermal columns carry hot material to the surface (photosphere) of the Sun. Once the material cools off at the surface, it plunges downward to the base of the convection zone, to receive more heat from the top of the radiative zone. At the visible surface of the Sun, the temperature has dropped to 5,700 K and the density to only 0.2 g/m3 (about 1/6,000th the density of air at sea level).

Photosphere - The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light. Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. Sunlight has approximately a black-body spectrum that indicates its temperature is about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (this is about 0.37% of the particle number per volume of Earth's atmosphere at sea level; however, photosphere particles are electrons and protons, so the average particle in air is 58 times as heavy).

Atmosphere or Corona - The parts of the Sun above the photosphere are referred to collectively as the solar atmosphere. They can be viewed with telescopes operating across the electromagnetic spectrum, from radio through visible light to gamma rays, and comprise five principal zones: the temperature minimum, the chromosphere, the transition region, the corona, and the heliosphere. The heliosphere, which may be considered the tenuous outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause, where it forms a sharp shock front boundary with the interstellar medium.

The coolest layer of the Sun is a temperature minimum region about 500 km above the photosphere, with a temperature of about 4,100 K.[59] This part of the Sun is cool enough to support simple molecules such as carbon monoxide and water, which can be detected by their absorption spectra.

Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total eclipses of the Sun. The temperature in the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of chromosphere helium becomes partially ionized.

The corona is the extended outer atmosphere of the Sun, which is much larger in volume than the Sun itself. The corona continuously expands into space forming the solar wind, which fills all the Solar System. The low corona, near the surface of the Sun, has a particle density around 1015–1016 m−3. The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. While no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.

First in line, "Mercury"

Mercury is the innermost of the eight planets in the Solar System. It is also the smallest, and its orbit has the highest eccentricity of the eight. It orbits the Sun once in about 88 Earth days, completing three rotations about its axis for every two orbits. Mercury has the smallest axial tilt of the Solar System planets. Mercury, being an inferior planet, appears as a morning star and an evening star, but is much more difficult to see than the other inferior planet, Venus. At its brightest, Mercury is technically a very bright object when viewed from Earth, but it is not easily seen in practice because of its proximity in the sky to the Sun.

Mercury is one of four terrestrial planets in the Solar System, and is a rocky body like the Earth. It is the smallest planet in the Solar System, with an equatorial radius of 2,439.7 km. Mercury is even smaller—albeit more massive—than the largest natural satellites in the Solar System, Ganymede and Titan. Mercury consists of approximately 70% metallic and 30% silicate material. Mercury's density is the second highest in the Solar System at 5.427 g/cm3, only slightly less than Earth’s density of 5.515 g/cm3. If the effect of gravitational compression were to be factored out, the materials of which Mercury is made would be denser, with an uncompressed density of 5.3 g/cm3 versus Earth’s 4.4 g/cm3.

Geologists estimate that Mercury’s core occupies about 42% of its volume; for Earth this proportion is 17%. Recent research strongly suggests that Mercury has a molten core. Surrounding the core is a 500–700 km mantle consisting of silicates. Based on data from the Mariner 10 mission and Earth-based observation, Mercury’s crust is believed to be 100–300 km thick. One distinctive feature of Mercury’s surface is the presence of numerous narrow ridges, extending up to several hundred kilometers in length. It is believed that these were formed as Mercury’s core and mantle cooled and contracted at a time when the crust had already solidified.

The surface temperature of Mercury ranges from 100 K to 700 K due to the absence of an atmosphere and a steep temperature gradient between the equator and the poles. The subsolar point reaches about 700 K during perihelion then drops to 550 K at aphelion. On the dark side of the planet, temperatures average 110 K. The intensity of sunlight on Mercury’s surface ranges between 4.59 and 10.61 times the solar constant (1,370 W·m−2).

Although the daylight temperature at the surface of Mercury is generally extremely high, observations strongly suggest that ice (frozen water) exists on Mercury. The floors of deep craters at the poles are never exposed to direct sunlight, and temperatures there remain below 102 K; far lower than the global average. Water ice strongly reflects radar, and observations by the 70 m Goldstone telescope and the VLA in the early 1990s revealed that there are patches of very high radar reflection near the poles. While ice is not the only possible cause of these reflective regions, astronomers believe it is the most likely.

The icy regions are believed to contain about 1014–1015 kg of ice, and may be covered by a layer of regolith that inhibits sublimation. By comparison, the Antarctic ice sheet on Earth has a mass of about 4×1018 kg, and Mars' south polar cap contains about 1016 kg of water. The origin of the ice on Mercury is not yet known, but the two most likely sources are from outgassing of water from the planet’s interior or deposition by impacts of comets.

Mercury is too small and hot for its gravity to retain any significant atmosphere over long periods of time; it does have a "tenuous surface-bounded exosphere" containing hydrogen, helium, oxygen, sodium, calcium, potassium and others. This exosphere is not stable—atoms are continuously lost and replenished from a variety of sources. Hydrogen and helium atoms probably come from the solar wind, diffusing into Mercury’s magnetosphere before later escaping back into space. Radioactive decay of elements within Mercury’s crust is another source of helium, as well as sodium and potassium. MESSENGER found high proportions of calcium, helium, hydroxide, magnesium, oxygen, potassium, silicon and sodium. Water vapor is present, released by a combination of processes such as: comets striking its surface, sputtering creating water out of hydrogen from the solar wind and oxygen from rock, and sublimation from reservoirs of water ice in the permanently shadowed polar craters. The detection of high amounts of water-related ions like O+, OH-, and H2O+ was a surprise. Because of the quantities of these ions that were detected in Mercury's space environment, scientists surmise that these molecules were blasted from the surface or exosphere by the solar wind.

Mercury’s surface is very similar in appearance to that of the Moon, showing extensive mare-like plains and heavy cratering, indicating that it has been geologically inactive for billions of years. Since our knowledge of Mercury's geology has been based on the 1975 Mariner flyby and terrestrial observations, it is the least understood of the terrestrial planets. As data from the recent MESSENGER flyby is processed this knowledge will increase. For example, an unusual crater with radiating troughs has been discovered which scientists called "the spider." It later received the name Apollodorus.

There are two geologically distinct plains regions on Mercury. Gently rolling, hilly plains in the regions between craters are Mercury's oldest visible surfaces, predating the heavily cratered terrain. These inter-crater plains appear to have obliterated many earlier craters, and show a general paucity of smaller craters below about 30 km in diameter. It is not clear whether they are of volcanic or impact origin. The inter-crater plains are distributed roughly uniformly over the entire surface of the planet.

The largest known crater is Caloris Basin, with a diameter of 1,550 km. The impact that created the Caloris Basin was so powerful that it caused lava eruptions and left a concentric ring over 2 km tall surrounding the impact crater. At the antipode of the Caloris Basin is a large region of unusual, hilly terrain known as the "Weird Terrain". One hypothesis for its origin is that shock waves generated during the Caloris impact traveled around the planet, converging at the basin’s antipode (180 degrees away). The resulting high stresses fractured the surface. Alternatively, it has been suggested that this terrain formed as a result of the convergence of ejecta at this basin’s antipode.

Overall, about 15 impact basins have been identified on the imaged part of Mercury. A notable basin is the 400 km wide, multi-ring Tolstoj Basin which has an ejecta blanket extending up to 500 km from its rim and a floor that has been filled by smooth plains materials. Beethoven Basin has a similar-sized ejecta blanket and a 625 km diameter rim. Like the Moon, the surface of Mercury has likely incurred the effects of space weathering processes, including Solar wind and micrometeorite impacts.

Bright Queen of The Sky, "Venus"

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. The planet is named after Venus, the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it has been known in ancient time as the Morning Star or Evening Star. It was not until the Hellenistic era (300-200 BC) astronomers realised it was one object and gave it the name it has today.

Venus orbits the Sun at an average distance of about 0.72 AU (108,000,000 km; 67,000,000 mi), and completes an orbit every 224.65 days. Although all planetary orbits are elliptical, Venus's orbit is the closest to circular, with an eccentricity of less than 0.01. When Venus lies between the Earth and the Sun, a position known as inferior conjunction, it makes the closest approach to Earth of any planet at an average distance of 41 million km. The planet reaches inferior conjunction every 584 days, on average. Owing to the decreasing eccentricity of Earth's orbit, the minimum distances will become greater over tens of thousands of years. From the year 1 to 5383, there are 526 approaches less than 40 million km; then there are none for about 60,158 years. During periods of greater eccentricity, Venus can come as close as 38.2 million km.

Venus is classified as a terrestrial planet and it is sometimes called Earth's "sister planet" owing to their similar size, gravity, and bulk composition (Venus is both the closest planet to Earth and the planet closest in size to Earth). It is covered with an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus has the most dense atmosphere of all the terrestrial planets in the Solar System, consisting of mostly carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of the Earth. Venus has no carbon cycle to lock carbon back into rocks and surface features, nor does it seem to have any organic life to absorb it in biomass. Venus is believed to have previously possessed oceans, but these evaporated as the temperature rose owing to the runaway greenhouse effect. The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind. Venus' surface is a dry desertscape with many slab-like rocks, periodically refreshed by volcanism.

Venus is one of the four solar terrestrial planets, meaning that, like the Earth, it is a rocky body. In size and mass, it is similar to the Earth, and is often described as Earth's "sister" or "twin". The diameter of Venus is 12,092 km (only 650 km less than the Earth's) and its mass is 81.5% of the Earth's. Conditions on the Venusian surface differ radically from those on Earth, owing to its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen.

Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it possesses some 167 large volcanoes that are over 100 km across. The only volcanic complex of this size on Earth is the Big Island of Hawaii. This is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years, while the Venusian surface is estimated to be 300–600 million years old.

Several lines of evidence point to ongoing volcanic activity on Venus. During the Soviet Venera program, the Venera 11 and Venera 12 probes detected a constant stream of lightning, and Venera 12 recorded a powerful clap of thunder soon after it landed. The European Space Agency's Venus Express recorded abundant lightning in the high atmosphere. While rainfall drives thunderstorms on Earth, there is no rainfall on the surface of Venus (though it does rain sulfuric acid, in the upper atmosphere, which evaporates around 25 km above the surface). One possibility is ash from a volcanic eruption was generating the lightning. Another piece of evidence comes from measurements of sulfur dioxide concentrations in the atmosphere, which were found to drop by a factor of 10 between 1978 and 1986. This may imply the levels had earlier been boosted by a large volcanic eruption.

Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as the Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, while on Earth, it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates the planet underwent a global resurfacing event about 300–600 million years ago, followed by a decay in volcanism. Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.

Venusian craters range from 3 km to 280 km in diameter. No craters are smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed down so much by the atmosphere, they do not create an impact crater. Incoming projectiles less than 50 meters in diameter will fragment and burn up in the atmosphere before reaching the ground.

Venus has an extremely dense atmosphere, which consists mainly of carbon dioxide and a small amount of nitrogen. The atmospheric mass is 93 times that of Earth's atmosphere, while the pressure at the planet's surface is about 92 times that at Earth's surface—a pressure equivalent to that at a depth of nearly 1 kilometer under Earth's oceans. The density at the surface is 65 kg/m³ (6.5% that of water). The CO2-rich atmosphere, along with thick clouds of sulfur dioxide, generates the strongest greenhouse effect in the Solar System, creating surface temperatures of over 460 °C (860 °F). This makes the Venusian surface hotter than Mercury's, which has a minimum surface temperature of −220 °C and maximum surface temperature of 420 °C, even though Venus is nearly twice Mercury's distance from the Sun and thus receives only 25% of Mercury's solar irradiance. The surface of Venus is often described as hellish. This temperature is even higher than temperatures used to achieve sterilization.

Studies have suggested that billions of years ago, the Venusian atmosphere was much more like Earth's than it is now, and that there were probably substantial quantities of liquid water on the surface, but, after a period of 600 million to several billion years, a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere. Although the surface conditions on the planet are no longer hospitable to any Earthlike life that may have formed prior to this event, the possibility that a habitable niche still exists in the lower and middle cloud layers of Venus can not yet be excluded.

Above the dense CO2 layer are thick clouds consisting mainly of sulfur dioxide and sulfuric acid droplets. These clouds reflect and scatter about 90% of the sunlight that falls on them back into space, and prevent visual observation of the Venusian surface. The permanent cloud cover means that although Venus is closer than Earth to the Sun, the Venusian surface is not as well lit. Strong 300 km/h winds at the cloud tops circle the planet about every four to five earth days. Venusian winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed.

The clouds of Venus are capable of producing lightning much like the clouds on Earth. The existence of lightning had been controversial since the first suspected bursts were detected by the Soviet Venera probes. In 2006–07 Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. The lightning rate is at least half of that on Earth. In 2007 the Venus Express probe discovered that a huge double atmospheric vortex exists at the south pole of the planet.

Another discovery made by the Venus Express probe in 2011 is that an ozone layer exists high in the atmosphere of Venus.

Our Home, "Terra"

Earth (or Terra or Gaia) is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets. It is sometimes referred to as the world, the Blue Planet, or by its Latin name, Terra.

Earth formed 4.54 billion years ago, and life appeared on its surface within one billion years. The planet is home to millions of species, including humans. Earth's biosphere has significantly altered the atmosphere and other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. Estimates on how much longer the planet will to be able to continue to support life range from a mere 500 million years, to as long as 2.3 billion years.

Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth's poles are mostly covered with solid ice (Antarctic ice sheet) or sea ice (Arctic ice cap). The planet's interior remains active, with a thick layer of relatively solid mantle, a liquid outer core that generates a magnetic field, and a solid iron inner core.

Earth interacts with other objects in space, especially the Sun and the Moon. At present, Earth orbits the Sun once every 366.26 times it rotates about its own axis, which is equal to 365.26 solar days, or one sidereal year. The Earth's axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days). Earth's only known natural satellite, the Moon, which began orbiting it about 4.53 billion years ago, provides ocean tides, stabilizes the axial tilt, and gradually slows the planet's rotation. Between approximately 3.8 billion and 4.1 billion years ago, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment.

Both the mineral resources of the planet and the products of the biosphere contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states, which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including personification as a deity, a belief in a flat Earth or in the Earth as the center of the universe, and a modern perspective of the world as an integrated environment that requires stewardship.

History of the Earth

The earliest dated Solar System material was formed 4.5672 ± 0.0006 billion years ago, and by 4.54 billion years ago (within an uncertainty of 1%) the Earth and the other planets in the Solar System had formed out of the solar nebula—a disk-shaped mass of dust and gas left over from the formation of the Sun. This assembly of the Earth through accretion was thus largely completed within 10–20 million years. Initially molten, the outer layer of the planet Earth cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed shortly thereafter, 4.53 billion years ago.

The current consensus model for the formation of the Moon is the giant impact hypothesis, in which the Moon was created when a Mars-sized object (sometimes called Theia) with about 10% of the Earth's mass impacted the Earth in a glancing blow. In this model, some of this object's mass would have merged with the Earth and a portion would have been ejected into space, but enough material would have been sent into orbit to coalesce into the Moon.

Outgassing and volcanic activity produced the primordial atmosphere of the Earth. Condensing water vapor, augmented by ice and liquid water delivered by asteroids and the larger proto-planets, comets, and trans-Neptunian objects produced the oceans. The newly formed Sun was only 70% of its present luminosity, yet evidence shows that the early oceans remained liquid—a contradiction dubbed the faint young Sun paradox. A combination of greenhouse gases and higher levels of solar activity served to raise the Earth's surface temperature, preventing the oceans from freezing over. By 3.5 billion years ago, the Earth's magnetic field was established, which helped prevent the atmosphere from being stripped away by the solar wind.

Two major models have been proposed for the rate of continental growth: steady growth to the present-day and rapid growth early in Earth history. Current research shows that the second option is most likely, with rapid initial growth of continental crust followed by a long-term steady continental area. On time scales lasting hundreds of millions of years, the surface continually reshaped as continents formed and broke up. The continents migrated across the surface, occasionally combining to form a supercontinent. Roughly 750 million years ago (Ma), one of the earliest known supercontinents, Rodinia, began to break apart. The continents later recombined to form Pannotia, 600–540 Ma, then finally Pangaea, which broke apart 180 Ma.